A Disaster Recovery Use Case

New Generation Data Protection

This use case describes a disaster recovery scenario affecting a medium-size company. It includes a systematic recovery timeline demonstrating how the company’s IT department restored their data center leveraging Acronis Backup Advanced suite of products.
Introduction

Data is your organization's lifeline. If you lose it, it can be more than an inconvenience. Lost data can result in a shutdown of internal business processes, impacting employee productivity, revenues, and brand reputation. Lost data can also result in contract penalties and stiff fines for non-compliance.

The most significant consequence of lost data can occur when a full disaster strikes. According to the Institute for Business and Home Safety, an estimated 25 percent of businesses do not reopen following a major disaster. If you do not have data protection, your company can be a statistic.

Acronis is crazy about protecting anything data. We have over a decade of experience in data protection and disaster recovery and today, we protect the data of over 5 million consumers, 300,000 businesses, and 5 million virtual machines (VMs) in over 130 countries.

With products developed for small / medium-sized business environments, and solutions that solve specific data protection problems for the enterprise, Acronis' new generation data protection technology simplifies backup and disaster recovery of your critical data, improving IT productivity and data recovery time, and reducing management complexity.

This document is a use case that describes a Disaster Recovery (DR) scenario affecting a medium-size company. The scenario: a disaster destroys the company's production data center and the IT team must recover the data center within the Recovery Time Objective.

The use case describes the company's IT environment, the backup and storage policy, the DR plan, and provides a systematic recovery timeline demonstrating how the IT department restored the data center leveraging Acronis Backup Advanced suite of products.

The Company’s Production Data Center

The company has one primary data center that is located in the same building as the rest of the company’s operations. The data center hosts all the production servers, storage, and the network infrastructure. Desktops, laptops, and mobile devices are connected via a wired and wireless infrastructure.

The Production Servers

The company has a hybrid IT environment – a mixture of physical and virtual servers that run different workloads and provide services to all departments.

- There are ten physical servers running two primary Microsoft® Active Directory® (AD) Domain Controllers (DCs), production ERP software, and legacy applications. IT is in the final stages of virtualizing the physical servers. A few physical servers will remain because some of the vendors cannot virtualize their applications.

- The majority of the workloads are on virtual machines running the VMware vSphere® Enterprise Edition suite. There are 15 ESXi hosts running 100 virtual machines; all controlled by a single VMware vCenter™ server.

- VMware vSphere has 16TB SAN storage for centralized production, which houses most of the VMs. Logically, vSphere is split into two segments – production and R&D / QA; both are implemented with vCenter, vSphere networking, and VMware vSphere® Distributed Switch™ (VDS).

- The virtual environment runs the majority of applications – Microsoft Exchange, a few Microsoft SQL Servers, custom applications developed by R&D, and a CRM system powered by an Oracle® database server running on a Windows® host.

- The Focus-SQL server is a standard physical 2U entry-level data center server. It has two CPUs, 8GB RAM, four SAS 2.5” 150GB drives, and is organized into a RAID-6 array with an onboard controller and two 1Gbit Ethernet controllers.

- The single 300GB RAID volume on Focus-SQL has three partitions:
 - A 100MB hidden partition created by the Windows Server® 2012 installation
 - A 120GB primary boot system partition (C drive) with 45GB occupied by the operating system and the Microsoft SQL Server application
 - A 180GB primary partition (D drive) with 75GB occupied by the SQL database and logs

- The network on the Focus-SQL is standard – static IP address, DNS name, membership in AD.
The Production Network
The company has a 1Gbit, flat structure network, running on mid-level network switches. The throughput is acceptable. Logically, the data center network has three major subnets:

- A physical segment housing physical servers, the ERP system, and primary DCs
- A production virtual segment defined and managed by vSphere VDS
- A R&D / QA virtual segment also handled by vSphere VDS

Production and Backup Storage
As described above, production storage is a centralized 16TB SAN, used by VMware vSphere. The backups are stored to three separate NAS devices:

- NAS-1 (8TB) is for backup of physical servers. It is connected to the same network switch with most of the other physical servers. The Focus-SQL backs up to NAS-1 and uses 8TB of storage space. Both the server and the NAS link to the same network switch through a 1GBit connection.

- NAS-2 is connected through a dedicated small network switch to Production ESXi hosts. IT has installed Acronis Backup Virtual Appliance on ESXi hosts for LAN-free agentless backup of the production VMs.

- NAS-3 (R&D/QA) is connected to one of the ESXi hosts of R&D / QA and Acronis Backup Virtual Appliance is installed here for the same reason.

As part of the overall disaster recovery plan, IT contracts with a system integrator (SI) to use a separate facility 100 miles from the production data center. The company has the right to claim required hardware in the event of a disaster.

When a disaster happens, the SI will provision a Microsoft Hyper-V virtual environment, providing 15 virtual hosts, a large amount of RAM, and sufficient storage space on the hosts’ local hard drives. The SLA specifies that the SI has two hours from the time of the request to get the Hyper-V infrastructure operational. These two hours do not include the time it takes to recover the company’s production workloads. The SI does not provide a SAN or physical servers due to the costs and the fact that their customers may require different connectivity, capacity and capabilities.
The Company’s Backup Policy

The company's backup policy is a subset of the overall DR plan. It describes the required IT equipment and a business continuity strategy that addresses all company operations – communication, business and banking, financial, audit and compliance, logistics, human resources, and so on.

Business Continuity Objectives

The first objective of the plan describes the company's Recovery Time Objective (RTO) and Recovery Point Objective (RPO). When deciding RTO and RPO, you need to consider your available budget. A shorter RTO and RPO are more expensive and require more resources.

For example, a zero RPO and RTO require you to implement long-distance fault tolerance systems. A RPO / RTO of seconds require a long-distance high availability solution.

This company cannot afford fault tolerance systems or a high availability solution.

To determine the maximum amount of time that the company can operate without critical systems, the committee analyzes the business processes, operations, downtime costs and available budget. They then map this time back to the RTO. The committee determines that the company's RTO for complete recovery and return to normal business operations is 96 hours.

Based on this, the RTO for the production data center is 72 hours. The RTO for any single server is 24 hours. With RTO, the subcomponents of the DR plan are always shorter than company's RTO. Next, the DR plan describes the company's Recovery Point Objective (RPO). The RPO is the maximum, tolerable period of time that assets can be lost. While all organizations want to preserve 100 percent of their assets, it is not economically feasible to do so.

Instead, the company must decide how many assets it can afford to lose to determine the RPO; the length of time before the DR event, up to the moment an event occurs, specified in seconds, minutes, hours, or days.

The committee determines that the organization's RPO is 24 hours. That means that the company is willing to lose products, assets, and data generated within the last 24 hours prior to a disaster. A RPO of 24 hours for the company's data means that IT can run data backups on a daily basis. The RPO of the subcomponents of an overall DR plan can be the same as or shorter than the company's overall RPO. Some organizations tier the production workloads and set different RPOs based on the value of generated data.

The Company's Backup Product

The company uses Acronis Backup Advanced to protect its production data center. Acronis Backup Advanced delivers unified data protection and disaster recovery for multi-system environments. Based on an organization's business needs, it can protect individual workloads or seamlessly blend into one efficient backup solution.

The company chose Acronis Backup Advanced because the suite of products provides:

- Data protection for the company's physical and virtual systems
- A unified console to configure, install, and maintain each product
- The Acronis Management Server (AMS), a single pane-of-glass interface that lets IT manage the backup and recovery of all data across multiple Acronis Backup Advanced products
- Disk and VM image backup so IT can capture a complete image of a disk or volume on a physical or virtual machine
- Single pass backup for Microsoft SQL Server and Active Directory, which lets IT capture both application and operating system data at one time
- Support for multiple hypervisors including VMware for the company's data center and Hyper-V for the DR Site
- Seamless P2V and V2V migration to support the disaster recovery of physical servers to virtual machines and VMware virtual machines to Hyper-V
- Agentless backup for VMware and Hyper-V virtual machines
- Wake-On-LAN, which automatically starts their PCs and ensures backups run on schedule
- Unified policies so IT can assign backup plans to one or more machines or by group

Finally yet importantly, the company chose Acronis because it eliminates a single point of failure. Each workload performs all critical capabilities, including the initiation of backups and facilitation of data streams. The AMS is used only for the management and reporting of tasks.

Backup Source Systems

The company uses Acronis Backup Advanced to protect all production workloads - the production and R&D / QA physical servers and VMs, and Focus-SQL. Full backups capture approximately 8TB of uncompressed data. Differential and incremental backups generate significantly less data because only the difference is stored. The company's average daily data change is about 1.5 percent; daily incremental backups capture 120GB of data, while weekly differentials capture 600GB of data.

With Acronis Backup Advanced, the company does not need to use synthetic or consolidation backups because the single-pass recovery automatically reconstructs the data from the backup points.
The Backup Storage Policy

The company initially backs up all of their systems to NAS devices and then replicates the backup copies to Acronis Cloud. Acronis Backup Advanced can include both backup and replication in the same plan.

With a local backup copy, IT can quickly recover individual workloads without retrieving backup copies from other locations. The backup copies stored in Acronis Cloud are used for disaster recovery.

This approach mirrors Acronis’ recommended 3-2-1 backup strategy: maintain all data in three locations (production systems, backup on NAS, and backup in Acronis Cloud), on two types of media (disk and cloud), and one copy of backup data stored offsite.

The Backup Schedule

With the RPO, RTO, backup source systems, and backup storage policy defined, it is easy for IT to define the backup schedule. Acronis Backup Advanced has a GFS (Grandfather-Father-Son) feature that fits the company’s needs.

Using this feature, the company decides to run monthly full backups of all data and weekly differential backups and daily incremental backups to minimize storage requirements and reduce backup times.

All daily backups start at 10:00 PM or later, after company business hours. Weekly and monthly backups run every Friday at 10:00 PM. The IT team does not need to define the exact timing to backup each individual server or VM. Acronis’ centralized scheduling automatically distributes the backups for individual physical servers randomly over a defined period. For virtual systems, Acronis Virtual Appliance automatically limits the number of VMs that it will back up in parallel.

IT does not have to define the blackout period for the backup window. Acronis uses snapshot technologies on both virtual and physical systems so operations are not affected. Acronis’s disk-imaging technology also backs up all the data consistently – even if the files are open.

Backup Duration

Production servers hold 2TB of data and the NAS-1 can ingest 80MB of data per second. With an average compression ratio of 2:1, a full backup (1TB) of the production servers takes three to four hours. The differential backups take 25 minutes, and incremental backups complete within ten minutes.

Production virtual servers hold 4TB of data, and NAS-2 performance is similar to NAS-1. Full backups take 8 hours, differentials complete within one hour, and incremental backups complete in less than 25 minutes.

The duration of backups for the R&D / QA teams is similar to the production physical server because NAS-3 performance is on par with its counterparts.
Natural disasters are common in certain geographies. For example, the U.S. reports more than 1,200 tornadoes every year. Earthquakes and tsunamis, floods, forest fires, hurricanes, mudslides, and avalanches can destroy a data center, sometimes without warning.

Many natural disasters can affect an entire area, which is why you must store one backup copy a reasonable distance from the original location. Being prepared is the key to ensuring that your organization’s operations continue.

War, terrorism, and sabotage are all man-made disasters. In many cases, man-made disasters are not intentional. Regardless, a fire caused by negligence or human error can destroy an entire data center.

While some man-made disasters can be prevented, no organization is 100 percent protected.

The DR plan must cover any incident that causes company operations to cease or data to be lost. The company creates a high-level DR plan, and the IT team develops a plan for the data center. The IT team plans, documents, and tests every step of the DR process.

IT does not need to create DR plans for each server or VM. Acronis Backup Advanced automatically generates the individual plans, providing detailed customized steps for recovery that includes machine names, setups, system configuration, backup archive naming, and so on.

During a disaster, the high-level plan is activated with instructions already prepared for single machines. The IT team exercises their DR plan on a regular basis so that every engineer understands their objectives and tasks. All engineers are required to attend Acronis’ training courses to receive Acronis Certified Engineer certifications.

A Disaster Happens

The disaster happens and company management invokes the DR plan. The IT team begins to recover the data center. Here is the timeline.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Action/Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0:00mn</td>
<td>The disaster happens.</td>
<td>The data center is destroyed.</td>
</tr>
<tr>
<td></td>
<td>0:10am</td>
<td>Company management invokes the DR plan.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0:11am</td>
<td>IT contacts the system integrator.</td>
<td>The SI starts a Hyper-V rollout of the DR site.</td>
</tr>
<tr>
<td></td>
<td>0:15am</td>
<td>IT contacts Acronis and invokes an Acronis Cloud Large Scale Recovery procedure.</td>
<td>Acronis prepares and ships HDDs of the company data with same-day service to the DR site.</td>
</tr>
<tr>
<td></td>
<td>2:06am</td>
<td>The SI completes the Hyper-V rollout on the DR site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3:43am</td>
<td>IT engineers arrive at the DR site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:11am</td>
<td>The engineers boot two Hyper-V VMs with Acronis boot media and start the recovery of the Active Directory servers from Acronis Cloud.</td>
<td>It is important to restore the AD DCs because they affect production operations. With Acronis Backup Advanced, the engineers do not wait for other steps to complete.</td>
</tr>
<tr>
<td></td>
<td>4:35am</td>
<td>The engineers start the installation of the AMS and the unified console on one of the Hyper-V hosts.</td>
<td>Using the AMS, the engineers quickly rollout the Hyper-V agents and then start the recovery of the VMs in parallel.</td>
</tr>
<tr>
<td></td>
<td>4:41am</td>
<td>The engineers start a mass installation of Acronis Backup Advanced Hyper-V Agents to all Hyper-V hosts.</td>
<td>The Acronis console installs agents en-masse and in parallel, saving time.</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Action/Event</td>
<td>Details</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4:55am</td>
<td>The AMS and console rollout finishes; for speed of recovery, the engineers install the consoles on each Hyper-V host.</td>
<td>The environment is now ready for main recovery operations.</td>
</tr>
<tr>
<td></td>
<td>5:01am</td>
<td>The engineers start to restore data from Acronis Cloud to five more critical servers.</td>
<td>This is happening awaiting the HDDs to arrive. The Focus-SQL server is one of these five servers.</td>
</tr>
<tr>
<td></td>
<td>5:53am</td>
<td>The recovery of the AD DC VMs is complete.</td>
<td>The servers can now boot. The engineers will set the IP configuration and check the AD / DNS operation.</td>
</tr>
<tr>
<td></td>
<td>6:11am</td>
<td>The AD DC servers are operational. Other servers' recovery continues throughout the day.</td>
<td>The network (IP / DNS) configuration is complete.</td>
</tr>
<tr>
<td></td>
<td>7:18pm</td>
<td>The express shipment of the large-scale recovery hard disks (LSR HDD) arrives at the DR site. The IT Manager distributes the HDDs to the engineers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:27pm</td>
<td>The engineers connect the LSR USB HDDs to the Hyper-V hosts and start the recovery of backups directly to the VMs.</td>
<td>Multiple engineers can access Acronis Backup Advanced Hyper-V agents from the local consoles.</td>
</tr>
<tr>
<td></td>
<td>11:11pm</td>
<td>As each VM recovers, the engineer starts the machine, enters the right IP configuration, ensures the communication to AD works, removes the VMware and hardware specific monitoring tools, and installs Hyper-V Integration Services.</td>
<td>As the MAC addresses change for new Hyper-V VMs, the original IP configuration becomes obsolete. Acronis Backup Advanced removes the IP configuration during the recovery process to avoid Windows-specific error messages and IP-address clashes.</td>
</tr>
<tr>
<td>Day 2</td>
<td>1:13am</td>
<td>All the Hyper-V VMs are recovered.</td>
<td>Acronis Universal Restore ensures that all dissimilar machines are operational.</td>
</tr>
<tr>
<td></td>
<td>1:20am</td>
<td>The engineers finish the recovery of individual workloads and start infrastructure-wide and semantic testing.</td>
<td>The infrastructure-wide tests ensure the operation of the SQL clusters and access to Exchange e-mail, the ERP system, etc. Semantic testing will imitate user work to ensure smooth operations.</td>
</tr>
<tr>
<td></td>
<td>4:00am</td>
<td>The data center restoration is complete.</td>
<td>Total Duration: 28 hours</td>
</tr>
</tbody>
</table>

The data center is operational, well below the RTO. However, the DR plan for the company is not fully executed yet. Other pieces of the plan are still in process – the relocation of employee offices and manufacturing facilities, connecting laptops and new desktops to the DR data center, and so on.
Recovery of the Focus-SQL Server

The engineers recover the Focus-SQL server on Day 1 at 5:01 AM (as part of the five servers recovered before the LSR HDDs arrive at the DR data center). The data is restored directly to the Hyper-V VM from Acronis Cloud. The steps are as follows:

- The engineer launches the AMS and connects to the Hyper-V agent on the host machine.
- The engineer starts the Recovery Wizard.
- In the “Select Data” field, the engineer browses to cloud storage and logs into the company account in Acronis Cloud.
- After selecting the Focus-SQL server backup, the engineer selects the “Recover To: New Virtual Machine” option.
- The engineer selects Hyper-V as the target and configures the VM:
 - The engineer leaves the CPU and RAM configuration as it is on the original machine (two CPUs and 8GB RAM).
 - As requested by a database administrator, the engineer increases the disk size to 500GB, up from the original 300GB.
 - The engineer defines the size of the individual partitions for recovery. The C drive will have 160GB (up from 120GB) and the D drive will have 340GB (up from 180GB).
 - The engineer selects to have the VM automatically start after the recovery is completed.
- Recovery begins.
- When finished, the VM automatically starts.
- The engineer connects to the VM using the Hyper-V management console to ensure it boots properly.
- Acronis Backup Advanced injects network drivers into the VM. The engineer reboots the VM, logs on and sets the IP configuration.
- The engineer installs the Hyper-V integration tools in order to get the best performance.
- The engineer ensures the SQL server operates properly and that it can communicate with the DNS and AD DCs.
- Recovery of the Focus-SQL server is complete.

Recovery is quick because the engineer did not need to:

- Provision the operating systems because the OS is already in the disk-image backup
- Recover the system state, which is not relevant with disk-image backups
- Install backup agents because with Hyper-V, everything is done agentless
- Run a separate data restore, which is an advantage of single pass backup and recovery
- Restore incremental backups because the recovery is single-pass and incremental backups are recovered automatically
- Roll forward SQL/Exchange logs because the incremental disk image backup includes the complete system and the latest status of data, not just transaction logs
Summary

A disaster destroys the company’s data center but the company is prepared. The IT team developed a disaster recovery plan that included the Recovery Point Objective, Recovery Time Objective, backup source systems, backup storage policy, backup schedule, and backup duration. The management team approved the disaster recovery plan. IT exercises the plan on a regular basis using different scenarios.

The timeline of actions clearly lays out the steps the IT engineers took to recover the data center and restore operations. Using Acronis Backup Advanced suite of products, the IT team achieved all of the business objectives set forth in the DR plan and restored all data center operations in 28 hours, well below the RTO of 72 hours.

The IT team used the following Acronis Backup Advanced products to support the backup and recovery of their data center:

- **Acronis Backup Advanced for Windows Server**: Image- or file-based backups of entire Windows machines running a Windows Server Operating System
- **Acronis Backup Advanced for VMware and Acronis Backup Advanced for Hyper-V**: Agentless backup for VMware / Hyper-V virtual machines including application support for Microsoft Exchange, SQL Server, SharePoint and Active Directory
- **Acronis Backup Advanced for Exchange**: Backup of Microsoft Exchange Server with cluster support and granular recovery
- **Acronis Backup Advanced for SQL**: Single-pass backup of Microsoft SQL Server with application-aware restore, from a single database / content database to the entire server
- **Acronis Backup Advanced for SharePoint**: Single-pass backup of any server role in a SharePoint farm with application-aware restore, from a single database / content database to the entire server
- **Acronis Backup Advanced for Active Directory**: Consistent single-pass backup and recovery of Domain Controllers, Active Directory databases, SYSVOLS, and logs
- **Acronis Backup to Cloud**: Flexible subscriptions available for scalable offsite storage in secure datacenters – initial seeding and large-scale recovery programs available

All of the products in the Acronis Backup Advanced suite are powered by the Acronis AnyData Engine, which combines backup, bare metal restore and system recovery to protect data whether it resides on premise, in the cloud, or in remote offices. With Acronis Backup Advanced, the company simplified backup and disaster recovery, significantly reducing the IT time and effort to recover their data center and get it back up and running in 28 hours.
Acronis Products and Solutions for Disaster Recovery

The Acronis AnyData Engine

The Acronis AnyData Engine is the core suite of technology that powers all Acronis new generation data protection products to capture, store, recover, control, and access data in virtual, physical, cloud, and mobile environments. Fueled by over 100 patents, its modular architecture lets you use one or more Acronis products, designed and optimized for a specific workload, and lets you add on and blend additional products as your technology infrastructure evolves - without replacing any products. Use the same unified console to configure, install, and maintain each product, and if you have more than one Acronis product, use the Acronis Management Server (AMS) - a single pane-of-glass interface that lets you easily manage the backup and recovery of all data across multiple Acronis products. With Acronis' unified policies, system administrators have the ability to define and manage consistent data protection policies and still get highly efficient, granular control. Whether your data resides on-premise, in the cloud, or in remote offices, the AnyData Engine combines data backup, bare metal restore, migration, system deployment, recovery, and access.
Acronis Backup
Powered by the Acronis AnyData Engine, Acronis Backup simplifies backup and disaster recovery of your critical data; protecting your entire system – even if you aren’t an IT expert.

Designed for specific business systems, Acronis’ patented disk-imaging technology combines single-pass backups with an easy-to-use interface to capture everything in one single step – operating systems, applications, data, and more.

You can then recover an entire system to any hardware or virtual machine – with all data intact – in minutes, or you can restore files, folders, and applications to any location in record time.

Each product in the Acronis Backup family is an all-in-one complete solution tailored to manage your Windows® Server / Windows Server Essentials® / Linux server, VMware®, and individual PCs - reducing downtime, data loss, and IT management.

Acronis Backup Advanced
Powered by the Acronis® AnyData Engine, Acronis Backup Advanced products deliver robust, yet easy-to-use unified data protection and disaster recovery for multi-system environments. Based on your business needs, deploy individual solutions or seamlessly integrate together into one efficient backup solution and manage using a single unified console. The suite includes local and cloud backup and recovery for virtual and physical Windows® / Linux environments; VMware®, Microsoft®, Citrix®, Red Hat®, and Oracle® hypervisors; and Microsoft Exchange, SQL Server®, SharePoint® and Active Directory®.

In minutes, you can recover individual files, application data, or a complete system to any location - reducing downtime and ensuring maximum data protection. Developed for multi-systems environments requiring a complete, efficient, and easy-to-use solution, Acronis’ new generation technology simplifies backup, disaster recovery, and secure access of your critical data, reducing data loss, IT management time and total cost of ownership.

Acronis Backup to Cloud
Acronis Backup to Cloud provides safe, secure and scalable disaster recovery, data protection, and off-site backup of any data, anywhere, anytime. It is the ultimate complete, user-friendly all-in-one backup solution – you simply buy a subscription, select the storage size you need, and go!

Leveraging the power of the Acronis AnyData Engine, Acronis Backup to Cloud lets you easily backup disks, partitions, and files to Acronis’ secure Software-Defined Storage at a remote datacenter and quickly recover entire files, folders, applications, or an entire system.

Its modular architecture lets you use Acronis Backup to Cloud in a stand-alone mode or seamlessly blend with Acronis Backup and Acronis Backup Advanced products.
Top 5 Reasons to Choose Acronis Backup for Disaster Recovery

1. Patented disk and VM image backup rapidly backs up and maintains a complete image of a disk or volume on a physical or virtual machine in one easy step.

2. Acronis stores data in a unified backup format so that you can easily recover to any platform, regardless of the source system, and recover to bare metal.

4. A complete yet easy to use solution, the Acronis AnyData Engine improves IT productivity and helps ensure business continuity.

5. Fast, easy recovery improves user productivity.

Useful Links

Acronis Website
Acronis Backup for Windows Server 11.5 Free Trial
Acronis Backup Advanced for Windows Server Free Trial
ABOUT ACRONIS

Acronis sets the standard for new generation data protection through its backup, disaster recovery, and secure access solutions. Powered by the AnyData Engine and set apart by its image technology, Acronis delivers easy, complete and safe backups of all files, applications and OS across any environment—virtual, physical, cloud and mobile.

Founded in 2002, Acronis protects the data of over 5 million consumers and 300,000 businesses in over 130 countries. With its more than 100 patents, Acronis’ products were named best product of the year by Network Computing, TechTarget and IT Professional and cover a range of features, including migration, cloning and replication.

For additional information, please visit www.acronis.com. Follow Acronis on Twitter: http://twitter.com/acronis.

For additional information, please visit http://www.acronis.com

To purchase products, please visit http://www.acronis.com/en-us/company/contacts.html#international to find an Acronis office or authorized dealer.

Copyright © 2002-2014 Acronis International GmbH. All rights reserved. “Acronis” and the Acronis logo are trademarks of Acronis International GmbH. Other mentioned names may be trademarks or registered trademarks of their respective owners and should be regarded as such. Technical changes and differences from the illustrations are reserved; errors are excepted. 2014-08